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It is demonstrated that the removal of factors of rt from the solutions of the linear 
second-order differential Schrijdinger equation containing atomic-like potentials is 
essential under certain conditions before carrying out the numerical work. Two examples 
are for large I(> 5) values and when derivatives of the solutions are recycled in the 
equation. The subsequent complications are dealt with by deriving a conceptually simple 
numerical procedure. The method is an extension of that due to Numerov and is re- 
miniscent of other approaches, all having a truncation error P. This is exemplified 
by examining the realistic hydrogen atom problem including the spin-orbit term and 
the results are compared to the exact solution and to the Numerov solution. We find 
that the approach suggested here gives significantly better results than the Numerov, 
and hence comparable, method. 

I. INTRODUCTION 

In the application of numerical methods to the solution of differential equations 
it is imperative that one be confident that any disparity between calculation and 
observation be a result of the simplifying approximations and not a result of 
inappropriate numerical procedures. This simply restates the warning appearing 
in many works on numerical analysis, namely, that careful analysis of the problem 
at hand must always precede the start of computation. We have encountered just 
this dilemma in solving the Schrijdinger equation for an electron in a metal [l-3]. 
Certain aspects of numerical procedures have been examined [4, 51 for similar 
problems, but not to the extent that we required. These works contain a comparison 
of a number of numerical methods and find them to be of comparable accuracy 
when applied in the same way. We compare our results to one of them, that is, 
the Numerov method [6]. 

The above implies that any improvement must come from further analysis of the 
differential equation. The type of equation considered herein is the radial 
SchriSdinger equation for spherically symmetric systems. This equation has the 
form 

[D2 - W, 4 r>l ry(E, 4 r) = f’UZ l,r), (1) 
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where 

Generally, 

D = dldr. (2) 

G(E, I, r) = E + V(r) + Ml + l)/r21, (3) 

where E is the usual energy eigenvalue, V(r) is the potential energy which we write 
in the form 

V(r) = -2ZQ(r)/r, (4) 

where Q(r) is unity at the origin and is differentiable to arbitrary order, by assump- 
tion, and Z is a constant, the nuclear proton number. Finally, the inhomogeneous 
term arises from the spin-orbit interaction and can be written as 

W, 1, r> = (l/WVdr)p(E~ 1, r>, (5) 

where rp is the complementary function of (1). Note that the units of length are 
atomic units and energies are in Rydbergs. 

Although (1) is in the standard form for the use of the Numerov procedure the 
nature of G and F cause ry to be proportional to rl+l. Since the Numerov method is 
accurate to order P, 8 being the interval, this factor is not reproduced well by the 
Numerov method and, by the same token, any comparable procedure. This 
discrepancy is particularly marked for outward solution near the origin where one 
must attempt a balance between reproducing the rz+l factor and having a power 
series represent ry accurately. We find that a significant improvement in the com- 
putations can be achieved by first removing the factor rz+l analytically and then 
solving the resultant differential equation numerically. 

Now, since the Numerov method is no longer applicable and since it is desirable 
for numerical procedures to be sufficiently straightforward so that a nonexpert in 
numerical analysis can apply them and even adapt them, if necessary, to suit his 
purposes, we develop a conceptually simple method to handle the problem. The 
method is an extension of that due to Numerov and is reminiscent of other 
approaches [7], all having a truncation error P. For the test case of the hydrogen 
atom problem this procedure is found to be at least as accurate as and generally 
much better than direct numerical solution of (1). It should be noted that it is not 
the particular numerical procedure that improves the calculations but the analysis 
of the differential equation. It is this point that we wish to stress rather than an 
examination of numerical methods. Also we did not wish to obscure the important 
features by using sophisticated numerical methods. 

In Section 2 we justify the use of numerical methods on Eq. (1) with (5). Section 3 
contains an outline of the removal of the factor rz+l and the derivation of the 
numerical method to be used. In Section 4 we echo the sentiments of a previous 
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author [4] by assuming that what is good for the hydrogen atom will be good for 
similar but more complicated systems also. Since the present authors are primarily 
interested in problems in solid state physics, only the outward numerical solution, 
which is sufficient for such problems, is discussed. Results are presented and 
analysed. 

2. APPLICABILITY OF NUMERICAL METHODS 

The solution of the homogeneous equation and the existence of power series 
expansions permitting the use of typical numerical methods is well documented 
[4, 6, 8,9] and will not be commented upon further. 

We now turn our attention to the solution of the inhomogeneous equation of the 
form presented above. The problems arising in its solution do not appear to have 
been adequately discussed in simple terms. Because V(r) -+ -2Z/r and 
DV(r) + 2Z/re as T + 0 the particular solution does not have a power series 
expansion in this region. This difficulty can be circumvented [IO] by setting 

~4% 4 r> = MO In r + b+iOlr)l v-05 I, r> + ~(4 6 r>, (6) 

where rp is the corresponding complementary function. The first term in the square 
brackets removes the nonpower series contribution from ry when 

y#) = Z2/22(1 + 1)(21 + 1). (7) 

The second term removes all vestige of the complementary function when 

y2(Z) = -z/41 (8) 

for this ensures that z is proportional to r z+2. The inclusion of this term also facili- 
tates the numerical solution. Since the I = 0 function is of no interest we exclude 
this case. z is the solution of 

where 
[D2 - G(E, Z, r)] z(E, I, r) = p(E, Z, r), (9) 

fl = (p/4) D v - M)lrl p - 2MO - [r2(O/r11 OP. WI 

The choice of n(j) and y,(l) ensure that near the origin the two leading terms cancel 
exactly and hence P is proportional to rz. 

The formal solution for z(E, Z, r) can be written down almost immediately and 
is 

4% 1, r> = v-45 6 r) Jar Ltp(E~l, tj32 Jot SP(J% L s)~E, 1, s) ds. (11) 

The only possible difficulties arise at the zeros in the complementary functionp. 
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First, let us consider the region r + 0. The interior integral presents no problems 
and behaves as tZ’+Z in this region. This factor cancels exactly with the corre- 
sponding factor in the denominator. Thus a power series solution exists in this region 
and is proportional to rz+2 as mentioned above. 

Second, let us consider p containing a single zero at r = r1 . Thus 

and 
rp(E, I, r) = rz+l(r - rI) j(E, 1, r), w 

4% L r) = rz+Yr - rl)B(E, 1, r) joT <t&+ 4(t), 
where 

Write 

(14) 

9W = d(h) + (r - rl) W(h) + [d(r) - 5&i> - (r - rl> Q&i)l. (1% 
Now D&rl) contains the factor [(I + 1) j(rJ + r, Dj(rl)] which is identically 
zero, using the fact that rp is the complementary function. Hence D&rl) E 0 and 

44 1, r) = - rz+2#(rl)f@, 1, r)/r, 

(16) 

The factor (t - rI)2 cancels exactly, leaving z well behaved with all of its derivatives 
defined. 

Finally, if rp has N nodes one writes 

fi (r _' ,)2 = [(r -! r1)2 + fi (r -! ri)2]Jcr - r1)2 + fi (r - r32] (17) i-l 

reducing the problem to the above one node case plus an N - 1 node case. All 
apparent singularities are removed in this way. 

We thus conlude that standard numerical procedures are applicable to this 
problem. 

3. SIMPLE EXTENSION OF THE NUMEROV PROCEDURE 

We now wish to set up a relatively simple procedure to take into account 
explicitly the factor r If1 in the solutions. Hence write 
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and substitute into (1) or (9) to obtain 

Wz + 4 r) D - g(E, r)l JV, 1, r) = f(& 1, r), (19) 

where now 

w, r) = w + 1)/r], (204 

gw, I) = +E + V(r), CW 

Now expand Y(E, I, r) in a power series about some value of rO with the expansion 
parameter S and notice that from (19) 

Y”tro + 6) = gtr6 + 9 Y(ro + 6) - W. + 6) Y’(r, + 8 +f(ro + S>, CW 

Y”trJ = &d Y(b) - &d Y’td + f(r& (21’9 

Y”(r, - S) = g(ro - 6) Y(r, - 6) - h(ro - 6) Y’(r, - S) +f(ro - S), (21c) 

and from the Taylor series expansions 

y’(r, + 6) = (1/2S)[Y(r, + 8) - Y(rlJ - S)] 

+ W)WTd + Y”(ro + Ql + W4), 

Y’(rll) = (1 /m WI3 + 3 - Y(r, - @I 
- w2)wY~o + 8) - Y”(r, - @I + O(S4), 

Yyr, - S) = (1/2S)[ Y(rO + 6) - Y(rO - S)] 

- (6/3)[2Y”(r,,) + Y”(r, - S)] + O(S4). 

(224 

GW 

WC) 

By neglecting terms of order S4, (22) can be used to eliminate the first derivatives 
in (21) and then (21) used to eliminate the second derivatives in 

y(r, + S) - 2Y(r,) + Y(ro - 6) = (Sa/12){Y”(ro + S) + lOY”(rd 

+ Y”(ro - @I + W? (23) 

to yield the result 

C+ Y(r,, + 6) = Co Y(r,,) - C- Y(r,, - S) + (S2/12) Fin + OtS’). (24) 
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This equation is exactly comparable to the Numerov equation and is used in the 
same way. In (24) - 

C+ = [l + @/24)(H+ + H-1 - (Wl2> G,] J1 + @PI) &,,I 
x [l + (W)(H+ - K) - (a2/6) G,l J2, 

Co = 2J, + @2/Wg(d J2, 

C- = [l - (6/24)(H+ + HP) - (a2/12) G-1 J1 - (a/24) h(r,) 

x [I + (6/12)(H+ - HP) - (a2/6) G-1 J2, 

Fin = IF+ + F-1 J1 + Wo) + @/W &&F+ - F-)1 J2 , 

J1 = 1 + @“/W h(rW+ + Xl, 
J2 = 10 - (26/3)[H+ - H-1, 

and where H+ , H- , G, , G- , F+ and Fe are all similarly defined by 

H+ = htro + S)/[l + (a/3) Mr6 + @I, etc. 
and 

H- = h(r,, - S)/[l - (a/3) h(ro - S)], etc. 

the denominators being common for all these functions. 

4. EXAMPLE AND DISCUSSION 

GW 
t2W 

(25~) 

(254 

CW 

Wb) 

(274 

t27b) 

In order to assess the practical implications of the previous sections the exact 
solution to the hydrogen atom problem is compared with that obtained from the 
Numerov method and from the procedure outlined in Sections 2 and 3. As 
mentioned previously only the outward integration is studied, the other aspects 
having been discussed elsewhere [4, 6, 91. The calculations have been performed 
using the standard varying interval [9] with six blocks of forty points each with a 
maximum r = 5.0, which represents a typical value occurring in solid state physics 
problems. Reduced results are summarized in Tables I-III for r = 4.0 and 5.0. 

First, the solution of the homogeneous equation was examined and we find that 
for low I (<5) values both numerical methods give comparable and excellent 
accuracy. However, as 1 increases the Numerov method becomes progressively less 
accurate whereas the modified procedure retains its high accuracy. This behavior 
is attributed to the fact that, for small r, ry is proportional to P+l and hence in the 
direct application of numerical procedures to (1) methods accurate to a6 are rather 
illusory. In fact, an examination of the results reveals that the relative error quoted 
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first arises at small r and propagates outward. The removal of the factor rz+l in ry 
surmounts this difficulty. Note that the n (or energy) dependence of the relative 
error is not significant. 

TABLE I 

-log [ Relative Error 1 for the Exact Homogeneous Equation 

Numerov method Modified procedure 

I 

0 

1 

n r = 4.0 5.0 4.0 5.0 

1 6.4 5.7 6.4 5.7 
2 7.5 7.4 7.5 7.4 
3 7.8 7.3 7.8 7.3 
4 7.6 7.3 7.6 7.3 

2 7.8 7.7 8.1 7.6 
3 7.8 7.3 8.0 7.3 
4 7.8 7.1 8.0 7.2 
5 7.8 6.9 8.1 7.1 

3 8.4 8.3 8.6 8.7 

4 8.1 8.2 9.0 9.0 

5 7.2 7.2 9.0 9.0 

6 5.2 5.2 9.0 9.0 

7 4.5 4.5 9.0 9.0 
8 3.9 3.9 9.0 9.0 
9 3.5 3.5 9.0 9.0 

TABLE II 

-log 1 Relative Error 1 for the Exact Inhomogeneous Equation 

1 n r = 4.0 5.0 4.0 5.0 
1 2 8.3 8.3 8.3 8.3 
2 3 8.4 8.4 8.7 8.4 
3 4 8.5 8.5 8.8 8.8 
4 5 7.3 7.4 9.0 9.0 
5 6 6.3 6.4 9.0 9.0 
6 7 5.7 5.8 9.0 9.0 
7 8 5.3 5.4 9.0 9.0 

Numerov method Modified procedure 
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TABLE III 

-log I Relative Error j for the Numerical Inhomogeneous Equation 

Numerov method Modified procedure 

I n r = 4.0 5.0 4.0 5.0 
1 2 7.5 7.3 8.0 7.9 
2 3 7.9 8.4 8.4 8.1 
3 4 6.7 6.8 8.8 8.5 
4 5 4.4 4.5 8.6 8.4 
5 6 2.0 2.1 9.0 8.7 
6 7 1.1 1.2 9.0 9.0 

Secondly, the exact inhomogeneous equation was formed and treated exactly as 
the homogeneous equation. A comparison of Tables I and II shows that comparable 
conclusions follow and that the interpretation presented there is collaborated and 
that the same resolution applies. 

Finally, in an actual problem, the inhomogeneous term (5) will not be known 
exactly but will be obtained numerically from the complementary function. At 
low I values, where both numerical solutions are accurate and smooth the particular 
solution is exceptionally good. However, at the higher 1 values the inaccuracies in 
the Numerov solution are enhanced in the derivatives and hence in the inhomo- 
geneous term. The derivatives were evaluated by a five point central difference 
formula. The errors rapidly make the Numerov method, and, in general, direct 
numerical solution of (l), inappropriate. In fact, by I = 5 the particular solution 
found by the Numerov method is unreliable for all r. On the other hand, the 
procedure outlined in this report circumvents these difficulties. 

In summary we note that for lower I values (<6) and an inhomogeneous term 
that is a relatively simple function of the complementary function the Numerov 
method is adequate. Further, because of its simplicity and rapidity it remains quite 
useful in an eigenvalue search. However, it is now clear that there exists a class of 
problems for which it is generally inappropriate and we have demonstrated a 
relatively simple procedure by which to handle such problems. 
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